Aggressive Lowering of Blood Pressure in type 2 Diabetes Mellitus:
The Diastolic Cost

Naftali Stern

Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
GUIDELINES FOR BLOOD PRESSURE CONTROL IN DIABETES MELLITUS

<130/85 mmHg
1993- NIH NATIONAL CONSENSUS
1997- JNC 6;

<130/80 mmHg
2000- National US consensus forum
Universally accepted
Some Blood Pressure Patterns in Type 2 Diabetes
Prevalence of Hypertension in Diabetes:
Cross sectional analysis in 2227 patients
(Kabakov et al, JCMS 2006)
Prevalence of Hypertension in Diabetes as a function of age
(Cross sectional analysis in 2227 patients)
Prevalence of Systolic & Diastolic Hypertension vs. Age: Cross sectional analysis of 2227 subjects (Kabakov et al, JCMS 2006)
BP features in Diabetic Hypertensive Subjects: Syst Eur as an example

Patients with diabetes:

⚠️ Mean **systolic blood pressure 1.7 mm Hg higher** than that in the nondiabetic patients

⚠️ Mean **diastolic blood pressure 1.1 mm Hg lower** than in nondiabetics =>

⚠️ Mean pulse pressure was 2.8 mm Hg wider in the diabetic patients
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DM (n=13101)</th>
<th>Glycemic Status IFG (n=1399)</th>
<th>NG (n=17012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>66.6 (7.4)**</td>
<td>67.0 (7.5)</td>
<td>67.1 (7.9)</td>
</tr>
<tr>
<td>Women</td>
<td>6463 (49.3)**</td>
<td>528 (37.7)**</td>
<td>5279 (45.4)</td>
</tr>
<tr>
<td>Black</td>
<td>5077 (38.8)**</td>
<td>413 (29.5)</td>
<td>5468 (32.1)</td>
</tr>
<tr>
<td>Education, mean (SD), y</td>
<td>10.7 (4.0)**</td>
<td>11.1 (3.9)</td>
<td>11.2 (4.0)</td>
</tr>
<tr>
<td>Cigarette smoker</td>
<td>1762 (13.4)**</td>
<td>329 (23.5)**</td>
<td>4714 (27.7)</td>
</tr>
<tr>
<td>Atherosclerotic CVD</td>
<td>4693 (35.8)**</td>
<td>876 (62.8)</td>
<td>10495 (61.7)</td>
</tr>
<tr>
<td>History of MI or stroke</td>
<td>2412 (18.4)**</td>
<td>288 (27.7)</td>
<td>4493 (26.4)</td>
</tr>
<tr>
<td>History of coronary revascularization</td>
<td>1403 (10.7)**</td>
<td>215 (15.4)</td>
<td>2479 (14.6)</td>
</tr>
<tr>
<td>Other atherosclerotic CVD</td>
<td>1969 (15.0)**</td>
<td>394 (28.2)</td>
<td>4994 (29.4)</td>
</tr>
<tr>
<td>Major ST depression/T-wave inversion#</td>
<td>865 (6.7)**</td>
<td>197 (14.3)</td>
<td>2104 (12.5)</td>
</tr>
<tr>
<td>History of CHD at baseline##</td>
<td>2578 (19.8)**</td>
<td>426 (30.8)</td>
<td>2951 (17.3)</td>
</tr>
<tr>
<td>History of HDL-C <35 mg/dl</td>
<td>1171 (8.9)**</td>
<td>252 (18.0)**</td>
<td>2250 (13.2)</td>
</tr>
<tr>
<td>History of LVH by electrocardiogram or echocardiogram</td>
<td>1656 (15.3)**</td>
<td>322 (26.3)</td>
<td>4061 (27.1)</td>
</tr>
<tr>
<td>Taking anthihypertensive medication</td>
<td>12098 (92.3)**</td>
<td>1247 (89.1)</td>
<td>15107 (88.8)</td>
</tr>
<tr>
<td>Aspirin</td>
<td>4415 (33.7)**</td>
<td>533 (38.1)</td>
<td>6451 (37.9)</td>
</tr>
<tr>
<td>Estrogen supplements 9women only</td>
<td>914 (14.1)**</td>
<td>82 (15.5)**</td>
<td>1637 (21.2)</td>
</tr>
<tr>
<td>Medication to lower lipid levels*</td>
<td>1682 (13.0)**</td>
<td>215 (15.6)</td>
<td>2423 (14.4)</td>
</tr>
<tr>
<td>Systolic/diastolic blood pressure, mean (SD), mm Hg</td>
<td>146.5 (15.4)/82.9 (10.0)</td>
<td>146.5 (15.7)/84.0 (9.8)</td>
<td>146.0 (15.8)/84.8 (10.0)</td>
</tr>
<tr>
<td>Taking antihypertensives</td>
<td>145.8 (15.5)/82.6 (9.9)</td>
<td>145.1 (15.5)/84.0 (9.8)</td>
<td>144.7 (15.6)/84.1 (9.9)</td>
</tr>
<tr>
<td>Not taking antihypertensives</td>
<td>155.2 (11.5)/87.3 (9.6)</td>
<td>158.4 (12.0)/89.8 (9.9)</td>
<td>156.4 (12.4)/90.4 (8.9)</td>
</tr>
<tr>
<td>BMI, mean (SD)</td>
<td>31.1 (6.3)**</td>
<td>30.5 (6.0)**</td>
<td>28.7 (5.8)</td>
</tr>
</tbody>
</table>

Abbreviations: ALLHAT, Antihypertensive and Lipid-Lowering Treatment to prevent Heart Attack Trial; BMI, body mass index (calculated as weight in kilograms divided by the square of height in meters); CHD, coronary heart disease; CDV, cardiovascular disease; DM, diabetes mellitus; HDL-C, high-density lipoprotein cholesterol; IFG, impaired fasting glucose level; LVH, left ventricular hypertrophy;MI, myocardial infarction; NG, normoglycemic.

SI conversion factor: to convert HDL-C to millimoles per liter, multiply by 0.0259.

*Unless otherwise indicated, data are expressed as number (percentage) of patients. Because of missing or invalid values, some denominators varied.

**Denominators were 12957 for DM, 1381 for IFG and 16678 for NG.

*Denominators were 12991 for DM, 1376 for IFG and 16902 for NG.

#Denominators were 12977 for DM, 1376 for IFG and 16902 for NG.

Copyright restrictions may apply.
Diastolic Blood pressure is lower in Diabetes: Baseline BP Characteristics of 31512 ALLHAT Participants by Glycemic Status*

<table>
<thead>
<tr>
<th></th>
<th>DM (n=13101)</th>
<th>IFG (n=1399)</th>
<th>NG (n=17012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic/diastolic BP, mean (SD), mm Hg</td>
<td>146.5 (15.4)/82.9 (10.0)**</td>
<td>146.5 (15.7)/84.0 (9.8)</td>
<td>146.0 (15.8)/84.8 (10.0)</td>
</tr>
<tr>
<td>Taking antihypertensives</td>
<td>145.8 (15.5)/82.6 (9.9)**</td>
<td>145.1 (15.5)/84.0 (9.8)</td>
<td>144.7 (15.6)/84.1 (9.9)</td>
</tr>
<tr>
<td>Not taking antihypertensives</td>
<td>155.2 (11.5)/87.3 (9.6)**</td>
<td>158.4 (12.0)/89.8 (9.9)</td>
<td>156.4 (12.4)/90.4 (8.9)</td>
</tr>
<tr>
<td>Guidelines</td>
<td>Blood Pressure</td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>NIH National Consensus</td>
<td><130/85 mmHg</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>JNC 6</td>
<td></td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>National US Consensus Forum</td>
<td><130/80 mmHg</td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>
Achieved blood pressure in major studies including diabetic hypertensive subjects

<table>
<thead>
<tr>
<th>Study</th>
<th>BP, mmHg</th>
<th>Mean Age</th>
<th>Drug(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOT</td>
<td>143/82</td>
<td></td>
<td>penedil</td>
</tr>
<tr>
<td>IDDNT</td>
<td>141/83</td>
<td>+58</td>
<td>irbesartan</td>
</tr>
<tr>
<td>RENAAL</td>
<td>140/74</td>
<td>+60</td>
<td>losartan</td>
</tr>
<tr>
<td>UKPDS</td>
<td>144/86</td>
<td></td>
<td>atenolol</td>
</tr>
<tr>
<td>ABCD</td>
<td>133/78</td>
<td>+58</td>
<td>enalapril</td>
</tr>
<tr>
<td>SYST-EUR</td>
<td>162/82</td>
<td>>60</td>
<td>nitendip.</td>
</tr>
<tr>
<td>Micro-HOPE</td>
<td>140/77</td>
<td>+65</td>
<td>ramipril</td>
</tr>
</tbody>
</table>
Recently completed cardiovascular and renal trials in which patients received 2 or more antihypertensive agents for intensive blood pressure control.

<table>
<thead>
<tr>
<th>Study</th>
<th>Target Blood Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom Prospective Diabetes Study (UKPDS)</td>
<td><85 mm Hg (Diastolic BP)</td>
</tr>
<tr>
<td>Appropriate Blood Pressure in Diabetes Trial</td>
<td><75 mm Hg (Diastolic BP)</td>
</tr>
<tr>
<td>Modification of Diet in Renal Disease Study (MIDED)</td>
<td><92 mm Hg (Mean arterial Pressure)</td>
</tr>
<tr>
<td>Hypertension Optimal Treatment Study (HOT)</td>
<td><80 mm Hg (Diastolic BP)</td>
</tr>
<tr>
<td>African-American Study of kidney Disease (AASKD)</td>
<td><92 mm Hg (mean Arterial pressure)</td>
</tr>
</tbody>
</table>

Antihypertensive Agents, No

<table>
<thead>
<tr>
<th>Antihypertensive Agents, No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Attempted Lowering of Both Systolic and Diastolic Pressure in Clinical Practice

- As of 1997 we systematically implemented JNC-VI guidelines (target < 130/85 mm Hg) for the treatment of hypertension in all type 2 diabetic hypertensive patients treated for hypertension at a university-affiliated medical center (n=257). Results of this intervention were reviewed in all subjects who had a minimal follow up period of 12 months (mean 20 months).

Osher et al, J Clin Hypert 2006
Principles of Intervention

- Individualized tailoring of medications based on a) the use of flexible drug combinations
- Gradual increments in dose or number of medications at 4-12 week intervals
- Use of ACE inhibitors whenever possible
- Use of beta blockers in individuals with documented previous coronary events
FINAL DIASTOLIC & SYSTOLIC PRESSURES DISTRIBUTION

- <130; >85 (N=4) 2%
- >=130; <85 (N=150) 58%
- >130; >85 (N=21) 8%
- <85/130 (N=82) 32%

Osher et al, J Clin Hypert 2006
FINAL DIASTOLIC PRESSURE GROUPS

- >=85 mmHg (N=25) 10%
- 71-84 mmHg (N=86) 33%
- 70 mmHg (N=93) 36%
- <70 mmHg (N=53) 21%
Final diastolic pressure (by diastolic pressure groups)

![Bar chart showing diastolic pressure by groups.

- <70 mmHg (N=57): 60±1
- 70 mmHg (N=93): 70
- 71-84 mmHg (N=86): 79
- >85 mmHg (N=25): 90±1

P=0.0001; All comparisons

Osher et al, J Clin Hypert 2006]
Initial diastolic pressure
(by final diastolic pressure groups)

- <70 mmHg (N=53): 85±2
- 70 mmHg (N=93): 89±1
- 70-84 mmHg (N=86): 89±1
- >=85 mmHg (N=25): 90±2
Decrease in diastolic pressure (by final diastolic pressure groups)

Osher et al, J Clin Hypert 2006
Initial systolic pressure (by final diastolic pressure groups)

- <70 mmHg (N=53): 166±4
- 70 mmHg (N=93): 159±3
- 70-84 mmHg (N=86): 153±2
- >=85 mmHg (N=25): 161±5

p<0.04, ANOVA
INITIAL PULSE PRESSURE
(By Final Diastolic Blood Pressure Groups)

P<0.01, ANOVA
Age by final diastolic pressure groups

- <70 mmHg (N=53): 70.3±1.3
- 70 mmHg (N=93): 67.4±1.1
- 70-84 mmHg (N=86): 61.7±1.2
- >=85 mmHg (N=25): 59.6±3

p<0.0001, ANOVA
Diabetic patients who normalized systolic & diastolic pressure vs. patients who normalized diastolic pressure only

- Diabetic patients who normalized systolic & diastolic pressure: 63 ± 1.4
- Diabetic patients who normalized diastolic pressure only: 67.5 ± 0.8

P < 0.01

Age distribution:
- <130/85 (N=82)
- <85;> ≥130 (N=150)
Patients who normalized both systolic & diastolic pressure vs. patients who normalized diastolic pressure only

Initial systolic pressure

- **<130/85 (N=82)**: 147±3
- **<85;>130 (N=150)**: 165±2

P=0.0001
Diabetic patients who normalized systolic & diastolic pressure vs. patients who normalized diastolic pressure only

Initial diastolic pressure mmHg

88±1

<130/85 (N=82)

<85;>130 (N=150)

NS
Diabetic patients who normalized systolic & diastolic pressure vs. patients who normalized diastolic pressure only

BMI

27.2±0.8

30±0.6

<130/85

<85;>130

P<0.01

*
Fraction of female gender among diabetic patients who normalized systolic & diastolic pressure vs. patients who normalized diastolic pressure only

Normalized Female/Male Ratio

F/M = 0.67

P < 0.005

F/M = 1.47

<130/85 (N=82)

<85; >130 (N=150)
Prevalence of Ischemic Heart Disease in Diabetic Hypertensive Patients by Final Diastolic Pressure (groups)

<table>
<thead>
<tr>
<th>Diastolic Pressure</th>
<th>Prevalence of IHD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><70 mmHg (N=53)</td>
<td>52.8%</td>
</tr>
<tr>
<td>70 mmHg (N=93)</td>
<td>33.3%</td>
</tr>
<tr>
<td>70-84 mmHg (N=86)</td>
<td>25.6%</td>
</tr>
<tr>
<td>>=85 mmHg (N=25)</td>
<td>24.0%</td>
</tr>
</tbody>
</table>

P < 0.01
Use of Nitrates in Diabetic Hypertensive Patients by Final Diastolic Pressure (groups)

<table>
<thead>
<tr>
<th>Pressure Range</th>
<th>Use of Nitrates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><70 mmHg</td>
<td>34.7%</td>
</tr>
<tr>
<td>70 mmHg</td>
<td>17.5%</td>
</tr>
<tr>
<td>70-84 mmHg</td>
<td>16.7%</td>
</tr>
<tr>
<td>>=85 mmHg</td>
<td>10.5%</td>
</tr>
</tbody>
</table>

P < 0.05
Excessive diastolic lowering – an inevitable outcome of aggressive BP lowering in type 2 diabetes!

- older age
- high initial systolic pressure and pulse pressure
- female gender
- presence of known coronary disease
In the treatment of hypertension in type 2 diabetes, can we avoid the diastolic cost?
In the treatment of hypertension in type 2 diabetes, can we entirely avoid the diastolic cost?

- **No BP Control** (≤130/80 mmHg)
- **No problem** (in BP control)
- **No way**
“Isolated Systolic hypertension” in the Syst-Eur Diabetic Population is defined as <95 mmHg

- ≥60 y/o
- SP: 160 to 219 mmHg (seated)
- DP: <95 mm Hg (seated)
- SP ≥ 140 mm Hg (standing)
Intensive Blood Pressure Control Reduces the Risk of Cardiovascular Events in Patients With Peripheral Arterial Disease and Type 2 Diabetes

Intensive treatment with no apparent diastolic cost (ABCD trial)

- Mean age: 59y
- Mild systolic hypertension (135-136 mmHg)
- Mild diastolic hypertension (84.4 mmHg)
- Low prevalence of known cardiovascular disease (10-11%)
The Appropriate Blood-Pressure Control in Diabetes (ABCD)

- A prospective interventional study of patients with type 2 diabetes.

- “Normotensive” patients (DP 80-89mmHg) were randomized to placebo or (moderate blood pressure control) intensive treatment with enalapril or nisoldipine.

- Moderate BP subjects had a mean blood pressure of \(137\pm0.7/81\pm0.3\) mm Hg over the last 4 years of treatment.

- Intensive treatment with enalapril or nisoldipine had a mean 4-year blood pressure of \(128\pm0.8/75\pm0.3\) mm Hg \((P<0.0001\) compared with moderate control).

- PAD, which is defined as an ankle-brachial index <0.90 at the baseline visit, was diagnosed in 53 patients.

- In patients with PAD, there were 3 cardiovascular events (13.6%) on intensive treatment Vs. 12 events (38.7%) on moderate treatment \((P=0.046)\).

* Mehler et al, Circulation. 2003;107:753
Recent Evidence for Diastolic Cost in Large Clinical Trials

- LIFE
- ALLHAT
- ASCOT- BPLA
Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE)
Diabetic ALLHAT Patients: Attained
Diastolic Blood Pressure, Year 5

On – Treatment Diastolic Blood Pressure in the ASCOT-BPLA: Entire Study Population (Non-DM+DM)
Evidence for damage inflicted by (“excessive”) diastolic lowering

Examples only; evidence to the contrary not reviewed
The role of diastolic blood pressure when treating isolated systolic hypertension
Somes et al, Arch Intern Med. 159:2004-9, 1999

In the SHEP study, after adjustment for the baseline risk factors of race (black vs other), sex, use of antihypertensive medication before the study, a composite variable (diabetes, previous heart attack, or stroke), age, and smoking history (ever vs never) and adjustment for the SBP as a time-dependent variable-

decrease of 5 mm Hg in DBP in the active treatment group only increased the risk for

- **stroke** relative risk - **1.14**; 95% CI 1.05-1.22),
- **CHD** relative risk - **1.08**; 95% CI, 1.00-1.16)
- **CVD** relative risk - **1.11**; 95% CI, 1.05-1.16).
Every 10–mm Hg rise in baseline SBP increased the risk for ESRD or death by 6.7% ($P = .007$);

The same rise in DBP decreased the risk by 10.9% ($P = .01$) when adjusting for urinary albumin-creatinine ratio, serum creatinine, serum albumin, hemoglobin, and hemoglobin Al_c.

Bakris et al Arch. Int Med. 2003;163:1555-1565
INVEST- post-hoc analysis

- 22576 subjects with both hypertension and coronary artery disease
- Randomized to verapamil SR- or atenolol-based protocol
- Evidence for J –curve for death, MI & stroke; nadir at 119/84 mmHg
- After multiple adjustments, J-curve persisted for diastolic pressure

Messerli F, Ann Int Med 2006
Excessive lowering of diastolic pressure is an inevitable outcome of attempts to approach target systolic pressure

- The initial excess in systolic pressure is typically much larger than in diastolic pressure (e.g., 157/86mmHg)
- There are no anti-hypertensive drugs which act exclusively on systolic pressure.
- Therefore, pushing systolic pressure all the way to < 130 mm Hg will inevitably drive diastolic pressure to low levels in some patients.
- Why has excessive diastolic lowering not been extensively addressed in diabetes? Because most clinical studies defined diastolic rather than systolic target pressure.
Is excessive lowering of diastolic pressure by anti-hypertensive agents unique to diabetes?

While it may not be unique to diabetics, it may be encountered more often in diabetes because

- It is only in diabetes that we are encouraged by guidelines to attempt forced titration of systolic pressure to less than 130 mmHg
- Low diastolic pressure per se often reflects arterial stiffening, which is increased in diabetes
- On-, as well as off-treatment diastolic pressure tends to be lower in diabetes
Correlates of excessive diastolic lowering when tight blood pressure control is attempted in diabetes

- Higher baseline systolic pressure
- Higher initial pulse pressure
- Older age
- The presence of pre-existing ischemic heart disease
- Female gender

Initial diastolic pressure is not different!!
Risks (?) of Diastolic Pressure Lowering Vs. Benefits of Systolic Pressure Lowering

- Because lower diastolic pressure may carry greater cardiovascular risk, particularly in patients with existing coronary disease, the problem of therapeutically induced “diastolic hypotension” in diabetes poses a real clinical challenge.

- The choice between leaving systolic pressure above the desirable range and lowering diastolic pressure to ~ 60, 50 or even 40 mmHg may not be unique for diabetics and is presently difficult to make based on real evidence. Is, for example, 136/57 worse or better than 126/48 mmHg?
Final Take-Home Questions:
In lowering BP to less than 130/80 mmHg, how far should we push and who should be exempt?

- What is the lowest acceptable on-treatment diastolic pressure?
- Is there an age limit to the “130/80 mmHg rule”?
- Should diabetic patients with hypertension and coronary artery disease be treated any differently, with respect to attained diastolic pressure, than diabetic patients with no known coronary disease?